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Abstract: Five dimensional neutral rotating black rings are described from a Randall-

Sundrum brane world perspective in the bulk black string framework. To this end we

consider a rotating black string extension of a five dimensional black ring into the bulk

of a six dimensional Randall-Sundrum brane world with a single four brane. The bulk

solution intercepts the four brane in a five dimensional black ring with the usual curvature

singularity on the brane. The bulk geodesics restricted to the plane of rotation of the black

ring are constructed and their projections on the four brane match with the usual black

ring geodesics restricted to the same plane. The asymptotic nature of the bulk geodesics

are elucidated with reference to a bulk singularity at the AdS horizon. We further discuss

the description of a brane world black ring as a limit of a boosted bulk black 2 brane with

periodic identification.
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1. Introduction

Higher dimensional spacetimes are now an essential aspect of effective field theories aris-

ing from fundamental theories of quantum gravity. The general assumption implicit in

such constructions was that the extra spatial dimensions are compactified to ultrashort

length scales. Hence quantum gravity effects were relegated to very high energy scales.

However in recent years the exciting possibility of low scale quantum gravity effects in the

brane world models have inspired considerable interest and interesting phenomenological

consequences [1 – 3]. The brane world scenario envisaged the gauge sector of the funda-

mental interactions to be restricted on a smooth codimension one hypersurface (refered

to as a brane) embedded in a higher dimensional space-time and the electroweak scale

as the fundamental scale. The usual four dimensional Planck scale was then a derived

scale. In particular the Randall-Sundrum models and their variants based on a warped

non factorable compactification geometry in a bulk Anti deSitter (AdS) space time offered

a partial resolution to the vexing hierarchy problem [4]. Although the analysis was valid in

a linearized framework a full non linear study from a supergravity perspective confirmed

the conclusions and their extension to any Ricci flat geometry on the brane [5, 6].

For consistency the brane world scenario requires generic four dimensional gravitational

configurations on the brane to arise from a higher dimensional bulk. The investigation

of black hole configurations in this context has been an exciting aspect of the study of

brane world gravity [5]. Such a black hole on the brane is expected to be a configuration

extended in the bulk. Chamblin, Hawking and Reall [7] attempted the description of a

Schwarzschild black hole in a typical single three brane five dimensional Randall-Sundrum

brane world as a bulk black string. This reproduced the usual Schwarzschild singularity

on the brane but additionaly was also singular at the AdS horizon far away from the three
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brane. Although a pathology, this singularity was possibly a linearization artifact and

could be shown to be a mild p-p curvature singularity. The bulk black string was subject

to the usual instabilities against long wavelength perturbations [8, 9] and was expected

to pinch off to a cigar geometry before reaching the AdS horizon. However the issue of

stability is contentious and for sphericaly symmetric solutions it was shown that a more

likely scenario is a transition to a non uniform black string [10]

In an earlier article [11]we have generalized the construction of Chamblin et. al. [7]to

consider rotating black holes in a five dimensional single three brane RS brane world. The

bulk configuration proposed was a five dimensional rotating black string which intercepted

the three-brane in a four dimensional rotating black hole described by a Kerr metric on the

three brane. It was found that the Kerr solution too was singular at the AdS horizon apart

from the usual ring singularity on the brane. The asymptotics of the equatorial geodesics

at the AdS horizon also indicated a p-p curvature singularity although an explicit determi-

nation was computationaly intractable. There have been other approaches to brane world

black holes including numerical studies for off brane metrics and a Hamiltonian constraint

approach to charged black holes [12 – 18]. In lower dimensions exact studies of brane world

black holes [19] involving the AdS C-metric have indicated that the bulk solutions are

regular everywhere emphasizing that the bulk singularity in higher dimension is possibly a

linearization artifact. However absence of exact bulk metrics in higher dimensions requires

a linearized approach and the black string framework is hence physicaly relevant in this

context in spite of such a bulk singularity.

The brane world constructions must be embedded in an appropriate string theory for

consistency, requiring the generalizations of these models to higher dimensions. The gener-

alization of the Randall-Sundrum construction and its variants to higher dimensions with

a single space like AdS direction and an appropriate codimension one brane is straightfor-

ward. Additionaly this may easily be extended to include the full non linear extensions

of a Ricci flat metric [20 – 22]. In higher dimensions also the consistency of such brane

world constructions require that gravitational configurations arise from appropriate bulk

scenarios. In particular this applies to higher dimensional black holes on the codimension

one brane. In this context in an earlier article [23]we had described the N dimensional

rotating Myers-Perry [24]black hole on a single (N-1) brane in a (N + 1) dimensional

RS brane world. The bulk solution in this case was a (N+1) dimensional rotating black

string extended in the AdS direction transverse to the (N-1) brane. Analysis of equato-

rial geodesics again indicated a p-p curvature singularity in the bulk apart from the usual

extended singularity on the (N-1) brane.

In the recent past there has been remarkable and surprising progress in understanding

higher dimensional black holes. In particular it has been realized that the no hair and the

uniqueness theorems are much less restrictive in higher dimensions [27]. In four dimensions

the no hair theorem characterizes any stationary asymptoticaly flat black hole solution of

Einstein-Maxwell system only by their mass, angular momentum and conserved charges

whereas the uniqueness theorem forbids event horizons of non spherical toplogies. However

the discovery [25] in five dimensions of an asymptoticaly flat stationary black hole solution

with a non spherical ring like S2×S1 horizon topology with the possibility of dipole charges,
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showed that higher dimensional black holes posess remarkably distinctive properties. The

static black ring solution [28] was first obtained through the Wick rotation of a neutral

solution of an Einstein-Maxwell system [29] although they involved conical singularities.

However the stationary solution rotating in the S1 direction was regular everywhere except

the usual curvature singularity. For fixed mass the angular momentum of the black ring

was bounded below and for a certain range of parameters two black rings and a usual

five dimensional rotating Myers-Perry black hole all with the same mass and spin coexist.

The charged versions of these black rings were first obtained in the framework of D=5

heterotic supergravity [30] and fully supersymmeric three charged black ring solutions in

D=5 followed later from compactifications of black supertubes in D=10 [31, 32]. It was

seen that these black rings could also support gauge dipoles independent of the conserved

gauge charges entailing an infinite non uniqueness and violating the no hair theorem [33].

As emphasized earlier, for consistency of the brane world scenario it is imperative that

gravitational configurations like black holes on the brane should arise from appropriate bulk

solutions. In this context it is but natural to investigate possible bulk configurations in a

higher dimensional brane world scenario which would describe five dimensional black rings

on the brane. This is especialy relevant for the neutral rotating black rings as they are Ricci

flat and hence satisfy the criteria for embedding in higher dimensional Randall-Sundrum

brane worlds. Naturaly the absence of exact solutions in higher dimensions require the

usual linearized framework to analyse this question. The black string approach is especialy

relevant in this context to highlight the physical aspects of such an embedding although it

suffers from singular pathologies which are possibly linearization artifacts.

In this article we address this issue and show that it is possible to consistently embed

the five dimensional black ring solution on a single four brane in a (5 + 1) dimensional

Randall-Sundrum brane world. Following the black string approach we consider a six

dimensional bulk rotating black string extension of the five dimensional black ring. This

bulk configuration intercepts the four brane in a five dimensional rotating black ring. In

what follows after a brief review of neutral rotating black rings, we obtain their geodesic

equations in the plane of the ring analogous to the equatorial plane of black holes with

spherical topologies. We further investigate the asymptotic behaviour of both the null and

the timelike geodesics in this plane to elucidate the restricted causal structure of the black

ring space time. In section three we consider a bulk rotating black string extension of a five

dimensional neutral rotating black ring in a six dimensional RS brane world with a single

four brane. The bulk black string intercepts the four brane in a five dimensional black

ring with the usual spacelike curvature singularity on the brane. Additionaly a curvature

singularity also appears at the AdS horizon far away from the four brane. Following the

description of a black ring as a boosted black string with periodic identification in a certain

limit, the bulk solution may be described as a boosted black two brane with the same

periodic identification. We then construct the six dimensional bulk geodesics in the plane

of rotation of the ring and show that their projections on the four brane reproduces the

usual five dimensional black ring geodesics in the same plane. To study of the nature of the

pathological singularity at the AdS horizon we further investigate the late time asymptotics

of these geodesics. It is shown that the curvature remains finite along unbound geodesics
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which reach the AdS horizon. We also discuss the possibility of the bulk solution to pinch

off before reaching the AdS horizon due to the usual instabilities and comment on the

possible stable solution in the light of the analysis outlined in [9] and [10]. In the last

section we provide a summary of our analysis and results and also discuss certain future

open issues in this area.

2. The rotating neutral black ring

In this section we first briefly review the neutral rotating black ring and elucidate the

nature of the adapted coordinate system . We then construct the black ring geodesics

restricted to the plane of rotation of the ring which is analogous to the equatorial geodesics

in solutions with a spherical topology. Furthermore we analyse the geodesic equations

to study the nature of the radial orbits for this plane and their asymptotics. The static

neutral black ring was originally discovered through a Wick rotation of certain Kaluza

Klein C metrics decribing neutral bubbles [29]. These involved conical singularities and

consequent deficit angles leading to either cosmic string defects joining these singularities

or deficit membranes. However an analytic continuation led to the original neutral rotating

black ring solution which was a five dimensional asymptoticaly flat black hole with a ringlike

S2 × S1 horizon topology, regular everywhere except at a spacelik e curvature singularity.

The original solution was further refined through appropriate factorizable choice of certain

functions appearing in the metric [30 – 32, 26]. The rotating black ring in equlibrium

was parametrized by a dimensionless reduced angular momentum j = 27π
32G

J2

M3 which was

bounded from below for a fixed mass. It could be shown that in the range 27

32
≤ j2 < 1

there existed one Myers-Perry black hole with spherical topology and two black rings

with identical mass and angular momenta, in direct violation of the black hole uniqueness

theorem.

2.1 Black ring metric

The metric of the neutral rotating five dimensional black ring in a specific adpated coordi-

nate system which is obtained from the foliation of space-time in terms of the equipotentials

of certain 1-form and 2-form gauge potentials is ,[32]

ds2 = −F (y)

F (x)

(

dt − C R
1 + y

F (y)
dψ

)2

+
R2

(x − y)2
F (x)

[

−G(y)

F (y)
dψ2 − dy2

G(y)
+

dx2

G(x)
+

G(x)

F (x)
dφ2

]

, (2.1)

where the functions

F (ξ) = 1 + λξ, G(ξ) = (1 − ξ2)(1 + νξ) , (2.2)

and

C =

√

λ(λ − ν)

(

1 + λ

1 − λ

)

. (2.3)
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Here R is a length scale which may be interpreted as the radius of the ring in some

limit [32] and the two dimensionless parameters λ and ν which are related to the shape

and the rotation velocity of the ring lie in the range

0 < ν ≤ λ < 1 . (2.4)

The range of the spatial co-ordinates (x, y) are required to be,

−1 ≤ x ≤ +1 , −∞ ≤ y ≤ −1 . (2.5)

respectively.

The constant y hypersurfaces are nested deformed solid toroids with topology S2×S1,

whereas the coordinate x is like a direction cosine, x = +1 points to the interior of the ring

and x = −1 points to the region outside the ring. The solution is a stationary axisymmetric

solution with rotation in the ψ direction, and admits t, φ, and ψ Killing isometries.

In order to avoid conical singularities at the fixed points x = −1 and y = −1 of the

Killing isometries ∂φ and ∂ψ the co-ordinates ψ and φ require to be identified with the

equal periods

∆ψ = ∆φ = 4π

√

F (−1)

|G′(−1)| = 2π

√
1 − λ

1 − ν
. (2.6)

Furthermore the requirement that the orbits of the isometry ∂φ shows no deficit angles at

x = +1 lead to the condition

λ =
2ν

1 + ν2
(2.7)

The co-ordinates (x, φ) parametrize a two-sphere S2, the co-ordinate ψ parametrizes a circle

S1 and the solution describes a black ring having a regular horizon of topology S1 × S2

and rotating in the S1 plane. However the horizon geometry is not a simple product of S2

and S1 as the two sphere S2 is deformed there and the deformation grows away from the

horizon.

The metric reduces to a conventional five dimensional Myers-Perry black hole with

rotation in a single plane if, instead of (7), we consider the limit, R → 0, (λ, ν) → 1 and

the parameters

m =
2R2

1 − ν
, a2 = 2R2 λ − ν

(1 − ν)2
, (2.8)

are held constant. In this case the co-ordinates (x, φ, ψ) characterises a three-sphere S3

which is a regular horizon of a five dimensional Myers-Perry black hole. The ergosphere and

the event horizon of the black ring are located at y = −1/λ and y = −1/ν respectively. At

y = −∞ there is a spacelike curvature singularity inside the horizon. Asymptotic infinity

is reached as (x, y) → −1.

The ADM mass and angular momentum are given as

M =
3πR2

4G

λ

1 − ν
(2.9)

J =
πR3

2G

√

λ(λ − ν)(1 + λ)

(1 − ν)2
. (2.10)
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The curvature squared for the black ring spacetime is computed to be,

RµνρσRµνρσ =
6ν2(1 + ν2)2Q(x, y)

R4(1 + ν2 + 2νx)6
(x − y)4, (2.11)

where Q(x, y) is a poynomial of degree six in x and y. Hence there is a spacelike curvature

singularity at y = −∞ inside the event horizon. In terms of the Myers-Perry co-ordinates

(t, r, θ, ψ, φ) the difference (x − y) goes like 1/r2 at large r, i.e. towards spatial infinity, so

that the curvature squared goes as

RµνρσRµνρσ ∼ 1

r8
(2.12)

as obtained in the case of five dimensional Myers-Perry black hole.

The rotating black ring in the limit of large radius R may be described after appropriate

coordinate redfinitions as a Schwarzschild black string boosted and periodically identified

along the translation invariant direction with a period 2πR [30, 32, 33]. The black string

metric is given as

ds2 = dw2 −
(

1 − r0

r

)

dt2 +

(

1 − r0

r

)−1

dr2 + r2dΩ2
2, (2.13)

where the horizon is at r = r0 and w is the translation invariant direction. The parameter

ν = r0/R is seen to correspond to the thickness of the ring or the ratio of the radius of

the S2 at the horizon and the ring radius R . The ratio λ/ν then measures the speed

of rotation of the ring in the S1 direction and the coordinate ψ = w/R corresponds to a

redefined translation invariant direction of the black string which is periodically identified

as w = w + 2πR. The speed of rotation is related to the local boost velocity given by
√

1 − (ν/λ) and reduces to
√

1 − (ν2/2) for the black ring space time to exclude any

conical singularities. [30]

2.2 Black ring geodesics

The first order geodesic equations may be derived using the canonical framework [34] from

the Lagrangian

L =
1

2
gµν ẋµẋν , (2.14)

here µ, ν = 0 . . . 4 and the covariant components of the metric tensor are as defined in

the previous section and ẋµ = dxµ/dρ with the affine parameter ρ = τ/m [36]for time

like geodesics, τ being the proper time and m the mass of the particle. Consequently, for

both time like and null geodesics the momenta are pµ = ẋµ. The covariant momenta may

be directly obtained from the Lagrangian and are given as pµ = gµν ẋµ. The norm of the

conjugate momenta is then given as,

gµνpµpν = −ǫm2 (2.15)

where gµν are the contravariant components of the black ring metric and ǫ = (0, 1) for null

and time like geodesics respectively.
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The black ring spacetime admits three Killing isometries generated by the vector fields

∂t, ∂ψ, and ∂φ corresponding to time translation and the two rotation isometries in the

coordinates φ, ψ. These isometries provide three conserved conjugate momenta, pt = −E,

pψ = Ψ, pφ = Φ. We consider the geodesics restricted to the plane of rotation of the black

ring, outside the ring, i.e, x = −1. It is analogous to an equatorial plane in the spherical

case in the sense that it is reflection symmetric and hence geodesics in it with zero initial

velocity in the transverse x direction will continue to remain in the plane. The plane

x = −1 being a fixed point of the ∂φ isometry, the gφφ component of the metric tensor goes

to zero smoothly there. The geodesic equations of motion in the equatorial plane for the t

and φ directions are obtained directly from the conserved conjugate momenta. These turn

out to be as follows:

dt

dρ
=

1 − λ

1 + λy

(

C2

(1 − λ)2
(1 + y)4

(1 + λy)G(y)
+ 1

)

E − C(1 + y)3

R(1 − λ)(G(y)
Ψ (2.16)

dψ

dρ
=

CR(1 + y)3

(1 − λ)G(y)
E − (1 + y)2(1 + λy)

R2(1 − λ)G(y)
Ψ (2.17)

The form of the y equation for geodesic motion in the equatorial plane is obtained directly

from eq. (15) to be,

(

dy

dρ

)2

+ gyy
(

gttE2 − 2gtψEΨ + gψψΨ2 + ǫm2

)

= 0, (2.18)

where gyy = 1/gyy , g
tt = gψψ/D, gψψ = gtt/D, gtψ = −gtψ/D and D = gttgψψ − gtψ

2.

Thus, the y equation may be expressed as

ẏ2 = − (1 + y)3

(1 − λ)2R2

(

C2(1 + y)3 + (1 − λ)2(1 + νy)(1 − y)

F (y)
E2

−2C(1 + y)2

R
EΨ +

(1 + λy)(1 + y)

R2
Ψ2 − ǫ(1 − λ)(1 + νy)(1 − y)m2

)

(2.19)

where ǫ = (0, 1) for null and timelike geodesics respectively. It should be noted that

the co-efficient of E2 in the r.h.s of the above equation remains finite and smooth at the

ergosphere, y = −1/λ, even though the function F (y) in the denominator vanishes. The

eqn (19) should be compared with that appearing in [35] for the null geodesics in the plane

of the ring, where a a certain normalization of the metric components have been chosen at

asymptotic infinity.

The y co-ordinate ranges over the plane of rotation of the ring from the curvature

singularity to asymptotic infinity and the above equation is analogous to particle motion

in a central potential

ẏ2 + Veff(y;E,Ψ) = 0 (2.20)

Towards asymptotic infinity, (x, y) → −1, the effective potential for time like geodesics

tends to

Veff(y;E,Ψ) → − 2(1 − ν)

R2(1 + λ)
η3(E2 − m2), (2.21)
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where η tends to 0 towards asymptotic infinity and is given by η = −(1 + y).

Unbound time like geodesics can exist only when E2 − m2 > 0 in which case the

effective potential Veff is negative at large distances and approaches zero at asymptotic

infinity (x, y = −1). For the case E2 < m2 only bound geodesics exist, in the sense that

such geodesics do not reach upto asymptotic infinity. Stable bound orbits are bound orbits

which do not end up in the singularity. It is common knowledge that stable bound orbits

do not occur in a higher dimensional central potential, even in the case of Newtonian

gravity. Thus it is expected that such orbits must be excluded from higher dimensional

black hole space times. This was explicitly shown for the equatorial geodesics of a five

dimensional Myers-Perry black hole in [36]. This conclusion is expected to also hold for

the class of geodesics restricted to the plane of rotation of the ring being considered here.

Their existence is indicated by the presence of stable circular orbits. For circular orbits,

we have the condition

Veff(y = yc) = 0 ,
∂Veff (y)

∂y
|y=yc

= 0 (2.22)

where y = yc is the ‘radius’ of the circular orbit.The condition for stability of the circular

orbit is
∂2Veff

∂y2
|y=yc

> 0. (2.23)

We get two simulataneous biquadratic equations in E and Ψ from eq. (22) which can

be solved in terms of the radius yc for a black ring of specific ν. These values of Ec and Ψc

can be then substituted into (23) to obtain a function of yc for a specific black ring [36]. It

is difficult to interpret the analytic expressions for Ec,Ψc and that of eq. (23) in terms of yc.

However, numerical plots have been obtained in figure 1 for the effective potential Veff(y)

against y which clearly shows that stable bound orbits are ruled out both for E2 > m2 and

E2 < m2 .

3. Brane world black ring

In this section we very briefly outline the construction of the Randall-Sundrum braneworld

with a single (N-1)-brane in (N+1) dimensions with a single AdS direction transverse to

the brane. We then consider the specific case of the five dimensional neutral rotating black

ring on a four brane in a (5+1) dimensional Randall-Sundrum braneworld with a single

AdS direction transverse to the brane hypersurface. We propose that the appropriate bulk

description is provided by a six dimensional rotating black string extension of the five

dimensional rotating black ring. The intercept of the bulk solution on the four brane is a

five dimensional black ring with the usual curvature singularity on the brane hypersurface

although an additional bulk singularity also appears at the AdS horizon. We also compute

the six dimensional bulk geodesics restricted to the plane of rotation of the black ring.

The projection of these bulk geodesics on the four brane reduces to the appropriate class

of black ring geodesics on the four brane hypersurface. The y orbits for the bulk solution

which reach the AdS horizon are then analyzed using the geodesic equation to elucidate
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Figure 1: Plot of black ring effective potential for ν = 0.46, L = 4.40145 and three different values

of E as indicated in the box. Motion is allowed only in the region where Veff < 0. The constants

m = R = 1. It is apparent that there are no stable bound orbits. E = 2.0 is close to having an

unstable circular orbit, whereas for E = 2.02 there are no inaccessible regions. Since E > 1 all the

three curves exhibit unbounded orbits. The case for E < 1 shows an exactly similar behaviour as

regards the bound orbits.

the nature of the bulk singularity at the AdS horizon. It is seen that the curvature remains

finite at the AdS horizon along the unbounded geodesics indicating the presence of a mild

p-p curvature singularity.

3.1 Black ring in a RS brane world

The bulk metric for single brane RS brane world in (N +1) dimensions, with one transverse

AdS direction to the (N-1) brane is as follows; [19, 21]

ds2 = gmndxmdxn =
l2

z2
[gµνdxµdxν + dz2]. (3.1)

Here µ, ν = 0 . . . (N −1) and m,n = 0 . . . (N) and l is the AdS length scale. The transverse

coordinate z = 0,∞ are the conformal infinity and the AdS horizon respectively. The actual

RS braneworld geometry is obtained by removing the small z region at z = z0 and glueing

a mirror copy of the large z geometry at the location of the (N-1) brane which ensures Z2

reflection symmetry. The resulting topology for the double brane RS scenario is essentialy

RN × S1

Z2
and in the single brane variant considered here the S1 direction is essentialy

decompactified with the second regulator brane being at z = ∞. The discontinuity of the

extrinsic curvature at the z = z0 surface corresponds to a thin distributional source of

stress-energy. From the Israel junctions conditions this may be interpreted as a relativistic
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(N-1) brane (smooth domain wall) with a corresponding tension [21, 19]. The orginal RS

model sliced the AdS space-time both at z = 0 and z = l and inserted two (N-1) branes

with Z2 reflection symmetry at both hypersurfaces. The Israel junction conditions then

required a negative tension for the brane at z = l. The variant considered here may be

obtained from the original RS model by allowing the negative tension brane to approach

the AdS horizon at z = ∞ . Although we focus here only on the single brane RS model

for convenience, our construction may be generalized to the original RS model with double

branes in a straightforward manner.

The Einstein equations in (N+1) dimensions with a negative cosmological constant

continue to be satisfied for any metric gµν which is Ricci flat. The curvature of the modified

metric now satisfies

RpqrsR
pqrs =

2N(N + 1)

l4
+

z4

l4
RµνλκRµνλκ (3.2)

where (p, q) runs over (N +1) dimensions and (µ, ν) over the N dimensions of the brane

world volume. The perturbations of the (N+1) dimensional metric around a Ricci flat

background are now normalizable modes peaked at the location of the (N-1) brane.

Having provided this brief introduction to the single brane RS model in (N+1) dimen-

sions we now specialize to N=5 and consider the bulk description of a five dimensional

neutral rotating black ring on the four brane in a six dimensional RS braneworld. To

this end we consider a bulk six dimensional black string extension of the five dimensional

rotating neutral black ring in the bulk. The black ring being a Ricci flat space-time the

bulk black string extension automaticaly satisfies the Einstein equation [21] For a reflec-

tion symmetric four brane hypersurface fixed at z = z0 we may introduce the co-ordinate

w = z − z0. The bulk metric on either side of the domain wall may now be expressed as

ds2 =
l2

(z0 + |w|)2

[

dw2 − F (y)

F (x)

(

dt − CR
1 + y

F (y)
dψ

)2

+
R2

(x − y)2
F (x)

(

−G(y)

F (y)
dψ2 − dy2

G(y)
+

dx2

G(x)
+

G(x)

F (x)
dφ2

)]

(3.3)

where −∞ < w < ∞ and the domain wall is located at w = 0.

The induced metric on the four brane at z = z0 may be recast into the black ring form

by suitably rescaling the coordinates and the parameters. The ADM mass and angular

momentum as measured on the brane, scaled by the conformal warp factor, are then given

as

M∗ =

(

l

z0

)2

M , J∗ =

(

l

z0

)3

J. (3.4)

where M,J are the bulk parameters.

The curvature squared for the bulk black string is computed to be;

RjklmRjklm =
1

l4

[

60 +
6(1 + ν2)2ν2Q(x, y)

R4(1 + ν2 + 2νx)6
z4(x − y)4

]

(3.5)
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Following eq. (12), towards spatial infinity on the brane the curvature squared behaves as

RjklmRjklm ∼ z4

r8
. (3.6)

The curvature invariant diverges at the spacelike singularity on the brane at y = −∞.

Additionaly, it is also seen to diverge at the AdS horizon z = ∞ for finite r. As mentioned

earlier, such a singularity seems to be a artifact of the linearized approximation. In order

to further investigate this issue we need to study the geodesics and their behaviour at the

AdS horizon.

As mentioned earlier the neutral rotating black ring maybe described in a certain

limit as a Schwarzschild black string boosted in the translationaly invariant direction and

identified periodicaly. In the braneworld construction that we have developed, this reduces

to a six dimensional bulk black two brane boosted along the extended direction on the four

brane and identified periodically. In the 5+1 dimensional brane world eq. (13) generalizes

to;

ds2 =
l2

z2

[

dz2 + dw2 −
(

1 − r0

r

)

dt2 +

(

1 − r0

r

)−1

dr2 + r2dΩ2
2

]

(3.7)

Here u is the translation invariant direction of the black string along the brane hypersurface

and z describes the transverse direction. Apart from the conformal factor the coordinate

z is a spectator dimension and hence we have a six dimensional bulk Schwarzschild black

two brane boosted along a translation invariant direction w and periodicaly identified as

w ∼ w + 2πR. This bulk black two brane in the limit of large boost velocity and a large

periodicity R intercepts the four brane in a fast spinning thin five dimensional neutral black

ring of large radius R with the usual curvature singularity on the brane. This is obvious as

the boost does not involve the transverse z direction and the limit of large radius and high

boost velocity are z independent. So in this limit after periodic identification the event

horizon has S2 × S1 × R topology extended in the bulk and periodic in the coordinate w

on the four brane.

3.2 The brane world geodesics

The geodesic equations for the the bulk spacetime may be obtained as earlier from the

Lagrangian

L =
1

2
= gjkẋ

j ẋk (3.8)

where gjk are the covariant components of the 5+1 dimensional metric as in eq. (24) and

j, k = 0 . . . 5. Also ẋ = dx/dρ and on time like geodesics the affine parameter ρ = τ/m.

Accordingly we have pj = ẋj, pj = gjkẋ
k and

gjkpjpk = −ǫm2 (3.9)

where ǫ = 0, 1 for null and time like geodesics respectively.

The z equation for geodesic motion is obtained from the Lagrangian as

d

dρ

(

1

z2

dz

dρ

)

=
ǫm2

zl2
. (3.10)
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The solution for null geodesics is either z =constant or

z = − z1l

mρ
. (3.11)

For timelike geodesics the solution is

z = −z1cosec(ρm/l). (3.12)

Here m is the particle mass for timelike geodesics and we should set z1/m=constant for

the null geodesics in this case. The null case z =constant is simply a null geodesic of the

five dimensional rotating black ring. We are interested in the other solutions which reach

the location of the bulk singularity at the AdS horizon z = ∞ for ρ → 0−.

The bulk spacetime has three killing isometries ∂t, ∂ψ, and ∂φ leading to the corre-

sponding conserved momenta pt = −E, pψ = Ψ and pφ = Φ for geodesic motion. Once

again we consider only those geodesics in the bulk which, on the 4-brane, are restricted to

the plane of rotation of the black ring , i.e in the x = −1 plane. The gφφ component of the

5+1 dimensional metric goes to zero on the plane of rotation so that E and Ψ are the con-

served quantities for such geodesics. The geodesic equations for the t and ψ co-ordinates

in the plane of rotation of the black ring are given as

dt

dρ
=

z2(1 − λ)

l2(1 + λy)

(

C2

(1 − λ)2
(1 + y)4

(1 + λy)G(y)
+ 1

)

E − z2C(1 + y)3

l2R(1 − λ)(G(y)
Ψ

dψ

dρ
=

z2CR(1 + y)3

l2(1 − λ)G(y)
E − z2(1 + y)2(1 + λy)

l2R2(1 − λ)G(y)
Ψ

(3.13)

The y equation of motion for time like and null geodesics in the bulk which reach the AdS

horizon is given by

(

dy

dρ

)2

+
z4

l4
gyy

(

l2m2

z2
1

+ gttE2 − gtψEΨ + gψψΨ2

)

= 0. (3.14)

Here the contravariant components of the metric in the equation are essentialy the black

ring metric without the bulk conformal factor.

The bulk timelike or null geodesics when projected onto the brane reduce to the time

like black ring geodesics restricted to the plane of rotation of the ring. The projection to the

four brane hypersurface is effected by scaling out the z dependence of the geodesics. First,

new parameters γ = z2/m2ρ for null geodesics and γ = (−z2
1/lm)cot(mρ/l) for time like

geodesics are introduced. We define the rescaled co-ordinates and parameters x = lx̃/z1,

y = lỹ/z1, t = lt̃/z1 , R = l2R̃/z2
1 , λ = z1λ̃/l, ν = z1ν̃/l. The integrals of motion are also

rescaled as E = lẼ/z1,Ψ = l3Ψ̃/z3
1 .

The geodesic equation for the y coordinate in the rescaled quantities may then be

written as,
(

dỹ

dγ

)2

+ Veff(ỹ; Ẽ, Ψ̃) = 0 (3.15)
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where Veff is the same effective potential as given in eq. (20). This is precisely the equation

in y for a time like geodesic in the plane of rotation of a five dimensional rotating black

ring with an ADM mass M̃ and angular momentum J̃ ,

M̃ =
(z1

l

)2

M , J̃ =
(z1

l

)3

J (3.16)

and thus existing on the four brane hypersurface located at z = z0 = l2/z1. The parameter

γ now serves as the proper time along the time like geodesic.

In order to ascertain the nature of the singularity at the AdS horizon (z = ∞) we

need to study the behaviour of the bulk geodesics near the AdS horizon, i.e as ρ → 0−.

This is equivalent to γ → ∞, so we need to investigate the late time behaviour of the five

dimensional time like geodesics on the four-brane. The geodesics ending into the black ring

singularity will take a finite amount of proper time to do so. For infinite proper time the

geodesics can either reach up to the asymptotic infinity on the four brane(x̃, ỹ = −z1/l) or

remain at a finite distance from the black ring horizon. The geodesics that reach asymptotic

infinity on the brane have late time behaviour

r̃ ∼ γ
√

Ẽ2 − m2, (3.17)

where

r̃2 = − 1

z1/l + ỹ
. (3.18)

The co-ordinate r̃ is the radial direction on the brane and it is the same as the radial Myers-

Perry coordinate for the black ring in the asymptotic limit modulo certain constants in the

plane of rotation of the black ring.

It is expected that stable bound orbits do not exist in the case of the five dimensional

black rings. So, only unbound geodesics may reach the AdS horizon at z → ∞. Along

such orbits the curvature squared, eq. (28), remains finite, thus indicating the presence of

a p-p curvature singularity at the AdS horizon. To explicitly illustrate this, it is necessary

to obtain the curvature components in an orthonormal frame parallely propagated on a

timelike geodesic to the AdS horizon. Although its simple to demonstrate this in the

case of the Schwarzschild black hole in a braneworld for more complicated metrics and

higher dimensions the explicit determination of this frame involves several coupled PDE

and renders this analysis computationaly intractable. Although we have to emphasize that

such frames exist the choice is highly non unique and a specific suitable such frame is

complicated to establish even for four dimensional Kerr black holes in a braneworld [11].

4. Summary and discussions

To summarize we have described a five dimensional neutral rotating black ring on a four

brane in a six dimensional Randall-Sundrum braneworld. As mentioned earlier this has

been motivated by the fact that for consistency the usual gravitational configurations on the

brane, in particular black holes must arise from some higher dimensional bulk solutions.

The five dimensional black ring being the first asymptoticaly flat solution with a non
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spherical horizon topology is an interesting configuration to study from a bulk brane world

perspective. Especialy as it explicitly violates the no hair and the uniqueness theorem.

Due to the absence of suitable exact bulk metrics in D > 4 a linearized framework around

a fixed solution is necessary for the analysis of the black ring in a brane world. In this

context the bulk black string approach of Chamblin et. al. [7] is especialy relevant to

elucidate the physical issues although the pathology of a singularity at the AdS horizon

persists. However, absence of such a singularity in lower dimensional brane worlds where

exact metrics are available shows the bulk singularity to be a linearization artifact.

To this end we have considered a bulk six dimensional black string extension of a five

dimensional rotating neutral black ring in a 5+1 dimensional Randall-Sundrum braneworld.

This choice is consistent with the usual reflection symmetric junction conditions on the

four brane in such warped compactification models. The bulk black string rotates in

the four brane world volume and the induced five dimensional metric on the four brane

describes a neutral rotating black ring. This reproduces the usual spacelike curvature

singularity of the black ring on the four brane hypersurface. Additionaly a singularity also

appears in the bulk at the AdS horizon. After elucidating the geodesics of the rotating

black ring restricted to the plane of rotation we have obtained both the timelike and the

null geodesics for the black string in the six dimensional bulk. We have further shown

that the restricted bulk geodesics projected on the four brane by scaling away the AdS

direction exactly match the corresponding class of five dimensional black ring geodesics.

The effective potential has been analysed numericaly and we have shown that stable bound

geodesics do n ot exist as is expected in D > 4. It has been further shown that the

curvature invariant remains finite along unbounded geodesics which reach the AdS horizon.

This clearly indicates that the bulk curvature singularity at the AdS horizon is possibly

a p-p curvature singularity although an explicit illustration using parallely propogated

orthonormal frames is computationaly intractable.

It is mentioned earlier that a fast spinning thin neutral rotating black ring may be de-

scribed as a black string boosted along the translationaly invariant direction and identified

periodically in some limit. We have shown that from the bulk perspective this descrip-

tion involves naturaly a black two brane in the six dimensional bulk orthogonal to the

four brane hypersurface. To obtain the black ring on the four brane the black two brane

must be boosted along a translationaly invaraint direction longitudinal to the four brane

and identified periodicaly along this direction. Due to the direct equivalence of the two

metrics it is obvious that the usual matching of the geodesics on the bulk and the brane

will continue to hold in this limit . In the black ring limit the event horzion in the bulk

would constitute a base S2 × S1 on the five dimensional brane hypersurface and a trivial

R fibration into the bulk.

The issue of stability of the bulk black string configuration is contentious and remains

unresolved for axialy symmetric stationary solutions. For AdS solutions one conclusion is

that the prefered phase will be an accumulation of a sequence of lower dimensional black

holes with the horzion pinched off at some scale. However for the usual Schwarzschild

black string this conclusion has been contested where it has been shown that a more likely

scenario is an evolution to a translationaly non invariant stable solution [10]. But this
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although plausible has not yet been generalized explicitly to axialy symmetric solutions.

It has been argued that the bulk solution should pinch off due to the instabilities before

reaching the singularity at the AdS horzion [7, 9]. However this issue is far from being

completely settled. It is possible that the pathology at the AdS horizon is a linearization

artifact especialy given that lower dimensional exact bulk solutions are regular everywhere.

There are several open issues for future studies. Charged rotating black ring solutions

have been obtained in the context of string theory through the O(d, d) transformations.

These have been further generalized to rotating black rings with dipole charges. In the

brane world scenario, bulk configurations which reduce to charged black holes have been

investigated. It could be shown in this case that the black hole on the brane developed a

tidal charge due to the extra dimensions apart from the usual conserved gauge charge [15].

It would be an interesting exercise to study the brane world formulation of the dipole black

rings in this context. Very recently it has been shown that in higher diemnsions it is possible

to have stable configurations involving combinations of black rings and black holes. These

have been christened black saturn and are remarkably novel solutions of higher dimensional

general relativity [37]. Naturally it would be interesting to investigate these configurations

from a brane world perspective. It is generaly expected that more such solutions would

be possible in the context of higher dimensions. Some of these issues are being currently

studied.
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